Finite sample properties of estimators of spatial autoregressive models with autoregressive disturbances

نویسندگان

  • Debabrata Das
  • Harry H. Kelejian
  • Ingmar R. Prucha
چکیده

The article investigates the finite sample properties of estimators for spatial autoregressive models where the disturbance terms may follow a spatial autoregressive process. In particular we investigate the finite sample behavior of the feasible generalized spatial two-stage least squares (FGS2SLS) estimator introduced by Kelejian and Prucha (1998), the maximum likelihood (ML) estimator, as well as that of several other estimators. We find that the FGS2SLS estimator is virtually as efficient as the ML estimator. This is important because the ML estimator is computationally burdensome, and may even be forbidding in large samples, while the FGS2SLS estimator remains computationally feasible in large samples. JEL classification: C0, C2

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information Theory Estimators for the First-Order Spatial Autoregressive Model

Information theoretic estimators for the first-order spatial autoregressive model are introduced, small sample properties are investigated, and the estimator is applied empirically. Monte Carlo experiments are used to compare finite sample performance of more traditional spatial estimators to three different information theoretic estimators, including maximum empirical likelihood, maximum empir...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Generalized Spatial Two Stage Least Squares Estimation of Spatial Autoregressive Models with Autoregressive Disturbances in the Presence of Endogenous Regressors and Many Instruments

This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the ca...

متن کامل

Conditional Maximum Likelihood Estimation of the First-Order Spatial Integer-Valued Autoregressive (SINAR(1,1)) Model

‎Recently a first-order Spatial Integer-valued Autoregressive‎ ‎SINAR(1,1) model was introduced to model spatial data that comes‎ ‎in counts citep{ghodsi2012}‎. ‎Some properties of this model‎ ‎have been established and the Yule-Walker estimator has been‎ ‎proposed for this model‎. ‎In this paper‎, ‎we introduce the...

متن کامل

Estimating a spatial autoregressive model with an endogenous spatial weight matrix

The spatial autoregressive model (SAR) is a standard tool to analyze data with spatial correlation. Conventional estimation methods rely on the key assumption that the spatial weight matrix W is strictly exogenous, which is likely to be violated in empirical analyses. This paper presents the speci…cation and estimation of the SAR model with an endogenous spatial weight matrix. The outcome equat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001